Cita:
Blissenobiarella ha scritto:
E comunque l'impalcatura teorica ce l'abbiamo. Basta leggere gli studi sulla coerenza di Preparata, del Giudice e company.
In breve: il problema principale nella fusione è quello di superare lo shell elettronico per consentire alle forze attrattive dei nuclei di agire.
Ad alte temperature è la potenza dello scontro tra gli atomi che permette ai nuclei di entrare in contatto, nelle stelle avviene giusto questo. A basse temperature ovviamente non si può usare l'energia necessaria a causare uno scontro così potente da superare lo shell, bisogna dunque ricorrere a metodi differenti. Si utilizza per cui un effetto noto alla scienza studiato da Chon e perfezionato dal team di Preparata che consente di separare, "elettricamente " possiamo dire, i nuclei di idrogeno dagli shell dopo che l'idrogeno è stato fatto circolare all'interno di un catodo metallico. Gli esperimenti fino ad ora condotti hanno utilizzato deuterio + palladio (Fleischmann e Pons e team di Preparata e co) e idrogeno + nichel ( team Focardi e co). Il metallo viene dunque forzato ad assorbire idrogeno fino a raggiungere un determinato punto di saturazione, dopo di chè viene applicata una corrente elettrica che spazza via gli elettroni lasciando i nuclei liberi di attrarsi. Se la concentrazione dell'idrogeno all'interno del catodo è sufficiente e i nuclei a questo punto si trovano abbastanza vicini ( la forza nucleare forte ha un raggio di azione ristretto in quindi i nuclei si devono trovare in "intimo contatto" perchè essa possa agire) la fusione avviene spontaneamente.
Un po' meno in breve, estratto da
http://www.rivistapaginauno.it/Piccole- ... escono.php:
[...]In che consiste la fusione fredda? Facciamo prima un passo indietro: in che consiste la fusione?
I nuclei degli elementi sono un insieme di neutroni e protoni tenuti insieme da forze di tipo nucleare a cui si aggiunge, come correzione, la repulsione elettrostatica dei protoni che essendo cariche positive si respingono. Se i protoni sono pochi, questa repulsione è piccola, se cominciano ad aumentare di numero la correzione elettrica inizia a diventare grande. Ci sono i due estremi: pochissimi nucleoni – così sono definite le particelle subatomiche che compongono il nucleo, siano esse protoni o neutroni – oppure moltissimi nucleoni.
Nel caso di moltissimi nucleoni, per esempio l’uranio, dove i protoni sono 92 e i neutroni 143, la repulsione tra questi 92 protoni mette a rischio la stabilità del nucleo che tende dunque a spezzarsi. Nei nuclei cosiddetti leggeri invece, per esempio un nucleo fatto con 2 protoni e 2 neutroni, dato che questi nucleoni si attirano tra di loro e la forza repulsiva elettrostatica è minima, se io ne aggiungo un altro l’energia prodotta aumenta. Immaginiamo due persone che si abbracciano: in due si abbracciano con una certa forza, in quattro con una forza maggiore, via via fino al punto di saturazione.
Dai nuclei leggeri quindi si ottiene liberazione di energia fondendo, cioè aumentando il numero dei nucleoni, mentre dai nuclei pesanti la si ottiene rompendo; da questi ultimi dunque libero energia con il processo della fissione, spezzando il nucleo, dai primi invece il contrario, ossia fondendo.
Facciamo un esempio: prendo un nucleo di idrogeno fatto da un protone e basta. Se aggiungo un neutrone ottengo una cosa che è ancora idrogeno ma pesa di più: è idrogeno pesante ossia deuterio. Poi prendo due nuclei di deuterio, li metto insieme e faccio un nucleo con due neutroni e due protoni, che è l’elio. Ho fatto una fusione. Da questa fusione si libera energia.
Però nella fusione c’è una difficoltà: le forze nucleari sono un milione di volte più intense delle forze elettriche ma hanno un raggio di azione piccolissimo per cui solo se quei due nuclei entrano in contatto si fondono; se stanno un poco lontani, le forze nucleari non hanno il raggio di azione sufficiente per attirarli. Dall’altra parte, le forze elettriche sono molto più deboli ma hanno il raggio di azione più grande, però sono repulsive: i due nuclei si respingono tra di loro, quindi la fusione non si può realizzare a meno che io non trovi un modo per farli entrare in contatto.
Come fare? Ci sono due modi: o con la forza o con le buone maniere.
Il primo è il metodo della cosiddetta ‘fusione calda’, che si basa sull’idea di dare ai nuclei tanta di quella energia che essi vincono la repulsione; questa energia è fornita tramite la temperatura.
Fatti i calcoli, si scopre che occorre una temperatura di 60 milioni di gradi per sormontare la repulsione elettrica. Con questa tecnica è stata realizzata la bomba H, la bomba all’idrogeno: prendo una bomba atomica a fissione, questa esplode, produce una temperatura di milioni di gradi e abbiamo la fusione dei nuclei. La bomba H è dunque un processo a due stadi. Occorre un detonatore, formato da una bomba atomica normale, che esplodendo determina la fusione.
Detto per inciso, questo è utile solo per le applicazioni militari, non per quelle energetiche, perché non posso far scoppiare una bomba atomica per produrre energia. Nel campo dell’uso energetico quindi il nucleare presenta ancora non pochi problemi, perché temperature così alte vaporizzano qualsiasi cosa, l’idrogeno riscaldato a 60 milioni di gradi si deve guardare bene dal toccare qualsiasi parete perché altrimenti la vaporizza. L’idea astuta è quella di prendere un recipiente con potenti calamite, confinare i nuclei nel centro del recipiente, quindi lontano dalle pareti, e bombardarli con potenti laser in modo da alzare la temperatura. Alzandosi, la potenza delle calamite deve ancora aumentare perché i nuclei tendono a respingersi… insomma, è una contraddizione che non finisce più e quindi non sorprende che il problema non sia ancora stato risolto.
In questa situazione di sfida tecnologica arrivano due professori che dicono: noi abbiamo realizzato la fusione nucleare a temperatura ambiente, spendendo in cinque anni di lavoro, dato che nessuno ci finanziava, i nostri risparmi, in totale l’equivalente di 20 milioni di lire di allora. E come? Usando le buone maniere invece della violenza.
I nuclei non vengono lasciati soli nel vuoto ma inseriti dentro una matrice metallica, in cui si trovano allo stato libero elettroni che sono carichi negativamente. L’idea è che gli elettroni, frapposti tra i nuclei di deuterio, li schermino. Il metallo che più si presta a fare questo è il palladio. Fleischmann era uno dei maggiori elettrochimici del mondo – dopo l’annuncio è stato dipinto come un cretino che non capiva nulla, ma era presidente dell’Associazione internazionale di elettrochimica – e qualche hanno prima aveva ricevuto la Palladium Medal, la medaglia di palladio: lui prese questo pataccone e lo fuse per fare gli elettrodi in cui inserire i nuclei.
Quando il numero di nuclei di deuterio inseriti nel metallo supera una certa soglia – che corrisponde a un nucleo di palladio per ogni nucleo di deuterio – i nuclei di deuterio cominciano a fondersi spontaneamente e si libera energia in forma di campi elettromagnetici che hanno la frequenza dei raggi gamma, campi che poi degradano e danno luogo al calore. Ora: la frequenza dei raggi gamma è adatta a spezzare un nucleo.
Se dunque anziché adoperare un ‘proiettile’, come un neutrone, si adopera un campo elettromagnetico, che non è puntiforme ma esteso, il problema della massa critica per avere un’esplosione nucleare non esiste più, perché un campo esteso non ha difficoltà a ‘colpire’ tutti i nuclei che trova, a scuoterli vigorosamente – dato che il campo elettromagnetico è un’oscillazione – e a spezzarli. Abbiamo così trovato un modo alternativo di realizzare la fissione nucleare senza usare ‘proiettili’, e quindi superare il problema balistico di cogliere il bersaglio. In questo modo non rompo il nucleo ma lo schiodo tramite risonanza.
Che questa non sia un’ipotesi ma un certezza posso personalmente garantirlo, perché ho partecipato agli esperimenti di fusione fredda fatti a Frascati ed esaminando al microscopio elettronico, dopo l’esperimento, il pezzo di metallo in cui questo è avvenuto, si evidenziava che c’erano zone vergini dove non era accaduto nulla e zone in cui tutto il reticolo cristallino era dissestato; facendo l’esame della natura dei nuclei con un’altra tecnica, chiamata SEM, questi erano, nei tratti vergini, al 99,9% nuclei di palladio, mentre nei tratti dissestati il 10% erano di nichel, e il nucleo di nichel è circa metà del nucleo di palladio. Questo vuol dire che era avvenuta una fissione del palladio.
Tra parentesi, la fissione del palladio è del tutto innocua, non libera energia perché il palladio non è né pesante né leggero ma in equilibrio e quindi rompendosi non libera energia.[...]